Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells

Authors:  David Sebastián, Isabel Suelves, Rafael Moliner, María Jesús Lázaro, Alessandro Stassi, Vincenzo Baglio, Antonino Salvatore Aricò

Abstract:
This work deals with an optimization of the platinum dispersion on low surface area carbon nanofibers (CNFs) by using different synthesis procedures and its electrocatalytic activity toward oxygen reduction. The selected CNFs were characterized by a BET surface area of ca. 100 m2 g−1 and were in-house synthesized by the decomposition of CH4 at 700C. Pt nanoparticles were deposited by using four different synthesis routes. A metal concentration of 20 wt% was confirmed by EDX and TGA. Two classical impregnation routes were employed, one using NaBH4 as reducing agent at 15C and the second one using formic acid at 80 C. Two alternative processes consisted in a microemulsion procedure followed by reduction with NaBH4 and a colloidal route by using the sulphite complex method followed by reduction with hydrogen. The main differences regarded the platinum crystal size varying from 2.5 nm for the colloidal route to 8.1 nm for the impregnation route (formic acid). The classical impregnation procedures did not result appropriate to obtain a small particle size in the presence of this support, whereas microemulsion and colloidal methods fit the requirements for the cathodic oxygen reduction reaction in polymer electrolyte fuel cells, despite the low surface area of CNFs. The catalysts were subjected to an accelerated degradation test by continuous potential cycling. Although the initial activity was the highest for the microemulsion based catalyst, after the accelerated degradation test the colloidal based catalyst experienced a relatively lower loss of performance.

Keywords:
Carbon nanofibers supports
Durability
Fuel cells
Oxygen–reduction reaction
Platinum

Published in: Applied Catalysis B: Environmental (Volumes 132–133, Pages 1-552, 27 March 2013)

Publisher: Elsevier  

ISSN Information: 0926-3373

Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn